首页> 外文OA文献 >Time-dependent modeling of extended thin decretion disks of critically rotating stars
【2h】

Time-dependent modeling of extended thin decretion disks of critically rotating stars

机译:对扩展的薄减量磁盘进行时间依赖性建模   旋转的星星

摘要

During their evolution massive stars can reach the phase of critical rotationwhen a further increase in rotational speed is no longer possible. Directcentrifugal ejection from a critically or near-critically rotating surfaceforms a gaseous equatorial decretion disk. Anomalous viscosity provides theefficient mechanism for transporting the angular momentum outwards. The outerpart of the disk can extend up to a very large distance from the parent star.We study the evolution of density, radial and azimuthal velocity, and angularmomentum loss rate of equatorial decretion disks out to very distant regions.We investigate how the physical characteristics of the disk depend on thedistribution of temperature and viscosity. We calculated stationary modelsusing the Newton-Raphson method. For time-dependent hydrodynamic modeling wedeveloped the numerical code based on an explicit finite difference scheme onan Eulerian grid including full Navier-Stokes shear viscosity. The sonic pointdistance and the maximum angular momentum loss rate strongly depend on thetemperature profile and are almost independent of viscosity. The rotationalvelocity at large radii rapidly drops accordingly to temperature and viscositydistribution. The total amount of disk mass and the disk angular momentumincrease with decreasing temperature and viscosity. The time-dependentone-dimensional models basically confirm the results obtained in the stationarymodels as well as the assumptions of the analytical approximations. Includingfull Navier-Stokes viscosity we systematically avoid the rotational velocitysign change at large radii. The unphysical drop of the rotational velocity andangular momentum loss at large radii (present in some models) can be avoided inthe models with decreasing temperature and viscosity.
机译:在它们的演化过程中,当不再可能进一步提高旋转速度时,恒星可以达到临界自转阶段。从临界或接近临界旋转的表面直接离心喷射形成气态赤道减量盘。异常粘度为向外传递角动量提供了有效的机制。盘的外部可以延伸到距母恒星很远的距离。我们研究了赤道​​减震盘的密度,径向和方位角速度以及角动量损失率向非常远的区域的演变。盘的厚度取决于温度和粘度的分布。我们使用牛顿-拉夫森方法计算了平稳模型。对于随时间变化的流体动力学建模,我们在包括完整的Navier-Stokes剪切粘度的欧拉网格上基于显式有限差分方案开发了数值代码。声波点距离和最大角动量损失率在很大程度上取决于温度曲线,并且几乎与粘度无关。大半径处的旋转速度根据温度和粘度分布而迅速下降。圆盘质量的总量和圆盘角动量随温度和粘度的降低而增加。随时间变化的一维模型基本上确认了在平稳模型中获得的结果以及解析近似的假设。包括完整的Navier-Stokes粘度,我们系统地避免了大半径下转速符号的变化。在温度和粘度降低的模型中,可以避免在大半径处(某些模型中存在)旋转速度和角动量损失的非物理下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号